research
The Structure of Titan's Atmosphere from Cassini Radio Occultations
- Publication date
- Publisher
Abstract
We present results from the two radio occultations of the Cassini spacecraft by Titan in 2006, which probed mid-southern latitudes. Three of the ingress and egress soundings occurred within a narrow latitude range, 31.34 deg S near the surface, and the fourth at 52.8 deg S. Temperature - altitude profiles for all four occultation soundings are presented, and compared with the results of the Voyager 1 radio occultation (Lindal et al., 1983), the HASI instrument on the Huygens descent probe (Fulchignoni et al., 2005), and Cassini CIRS results (Flasar et al., 2005; Achterberg et al., 2008b). Sources of error in the retrieved temperature - altitude profiles are also discussed, and a major contribution is from spacecraft velocity errors in the reconstructed ephemeris. These can be reduced by using CIRS data at 300 km to make along-track adjustments of the spacecraft timing. The occultation soundings indicate that the temperatures just above the surface at 31-34 deg S are about 93 K, while that at 53 deg S is about 1 K colder. At the tropopause, the temperatures at the lower latitudes are all about 70 K, while the 53 deg S profile is again 1 K colder. The temperature lapse rate in the lowest 2 km for the two ingress (dawn) profiles at 31 and 33 deg S lie along a dry adiabat except within approximately 200m of the surface, where a small stable inversion occurs. This could be explained by turbulent mixing with low viscosity near the surface. The egress profile near 34 deg S shows a more complex structure in the lowest 2 km, while the egress profile at 53 deg S is more stable