research

Should Pruning be a Pre-Processor of any Linear System?

Abstract

There are many real-world problems whose mathematical models turn out to be linear systems Ax = b , where A is an m by x n matrix. Each equation of the linear system is an information. An information, in a physical problem, such as 4 mangoes, 6 bananas, and 5 oranges cost $10, is mathematically modeled as 4x(sub 1) + 6x(sub 2) + 5x (sub 3) = 10, where x(sub 1), x(sub 2), x(sub 3) are each cost of one mango, that of one banana, and that of one orange, respectively. All the information put together in a specified context, constitutes the physical problem and need not be all distinct. Some of these could be redundant, which cannot be readily identified by inspection. The resulting mathematical model will thus have equations corresponding to this redundant information and hence are linearly dependent and thus superfluous. Consequently, these equations once identified should be better pruned in the process of solving the system. The benefits are (i) less computation and hence less error and consequently a better quality of solution and (ii) reduced storage requirements. In literature, the pruning concept is not in vogue so far although it is most desirable. In a numerical linear system, the system could be slightly inconsistent or inconsistent of varying degree. If the system is too inconsistent, then we should fall back on to the physical problem (PP), check the correctness of the PP derived from the material universe, modify it, if necessary, and then check the corresponding mathematical model (MM) and correct it. In nature/material universe, inconsistency is completely nonexistent. If the MM becomes inconsistent, it could be due to error introduced by the concerned measuring device and/or due to assumptions made on the PP to obtain an MM which is relatively easily solvable or simply due to human error. No measuring device can usually measure a quantity with an accuracy greater that 0.005% or, equivalently with a relative error less than 0.005%. Hence measurement error is unavoidable in a numerical linear system when the quantities are continuous (or even discrete with extremely large number). Assumptions, though not desirable, are usually made when we find the problem sufficiently difficult to be solved within the available means/tools/resources and hence distort the PP and the corresponding MM. The error thus introduced in the system could (not always necessarily though) make the system somewhat inconsistent. If the inconsistency (contradiction) is too much then one should definitely not proceed to solve the system in terms of getting a least-squares solution or a minimum norm solution or the minimum-norm least-squares solution. All these solutions will be invariably of no real-world use. If, on the other hand, inconsistency is reasonably low, i.e. the system is near-consistent or, equivalently, has near-linearly-dependent rows, then the foregoing solutions are useful. Pruning in such a near-consistent system should be performed based on the desired accuracy and on the definition of near-linear dependence. In this article, we discuss pruning over various kinds of linear systems and strongly suggest its use as a pre-processor or as a part of an algorithm. Ideally pruning should (i) be a part of the solution process (algorithm) of the system, (ii) reduce both computational error and complexity of the process, and (iii) take into account the numerical zero defined in the context. These are precisely what we achieve through our proposed O(mn2) algorithm presented in Matlab, that uses a subprogram of solving a single linear equation and that has embedded in it the pruning

    Similar works