research

Reevaluating the Role of Saharan Air Layer in Atlantic Tropical Cyclogenesis and Evolution

Abstract

The existence of the Saharan air layer (SAL), a layer of warm, dry, dusty air that frequently moves westward off of the Saharan desert of Africa and over the tropical Atlantic Ocean, has long been appreciated. As air moves over the desert, it is strongly heated from below, producing a very hot air mass at low levels. Because there is no moisture source over the Sahara, the rise in temperature causes a sharp drop in relative humidity, thus drying the air. In addition, the warm air produces a very strong jet of easterly flow in the middle troposphere called the African easterly jet that is thought to play a critical role in hurricane formation. In recent years, there has been an increased focus on the impact that the SAL has on the formation and evolution of hurricanes in the Atlantic. However, the nature of its impact remains unclear, with some researchers arguing that the SAL amplifies hurricane development and with others arguing that it inhibits it. The argument for positively influencing hurricane development is based upon the fact that the African easterly jet provides an energy source for the waves that eventually form hurricanes and that it leads to rising motion south of the jet that favors the development of deep thunderstorm clouds. The potential negative impacts of the SAL include 1) low-level vertical wind shear associated with the African easterly jet; 2) warm SAL air aloft, which increases thermodynamic stability and suppresses cloud development; and 3) dry air, which produces cold downdrafts in precipitating regions, thereby removing energy needed for storm development. As part of this recent focus on the SAL and hurricanes (which motivated a 2006 NASA field experiment), there has been little emphasis on the SAL s potential positive influences and almost complete emphasis on its possible negative influences, almost to the point of claims that the SAL is the major suppressing influence on hurricanes in the Atlantic. In this study, multiple NASA satellite data sets (TRMM, MODIS, CALIPSO, and AIRS/AMSU) and National Centers for Environmental Prediction global analyses are used to see if the proposed negative influences deserve all of the attention they have recently received. The results show that storms generally form on the southern side of the African jet, where favorable background rotation is high. The jet often helps to form the northern side of the storms and is typically stronger in storms that intensify than those that weaken, suggesting that jet-induced vertical wind shear is not a negative influence on developing storms. Warm SAL air is confined to regions north of the jet and generally does not impact the tropical cyclone precipitation south of the jet. A comparison of the environments of strongly strengthening storms and of weakening storms shows no differences in SAL structure, indicating that the SAL has little influence on whether storms weaken or intensify. The large-scale flow at upper levels above the SAL was found to be most important, with the environment of strengthening storms having very little vertical wind shear and also favoring more expansive outflow from the storm. The SAL is shown to occur in a large-scale environment that is already characteristically dry as a result of large-scale subsidence (sinking air motions). Strong surface heating and deep dry convective mixing enhance dryness at low levels, but moisten the air at midlevels. Therefore, mid-to-upper-level dryness is not a defining characteristic of the SAL, but is instead a signature of subsidence. As a result, we conclude that the SAL is not the major negative influence on hurricanes that recent studies have emphasized. It is just one of many possible influences and can be both positive and negative

    Similar works