research

An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers

Abstract

In earlier investigations, the adaptation and implementation of a modified two-level corrections (or targeting) process as the onboard targeting algorithm for the Trans-Earth Injection phase of Orion is presented. The objective of that targeting algorithm is to generate the times of ignition and magnitudes of the required maneuvers such that the desired state at entry interface is achieved. In an actual onboard flight software implementation, these times of ignition and maneuvers are relayed onto Flight Control for command and execution. Although this process works well when the burn durations or burn arcs are small, this might not be the case during a contingency situation when lower thrust engines are employed to perform the maneuvers. Therefore, a new model for the two-level corrections process is formulated here to accommodate finite burn arcs. This paper presents the development and formulation of the finite burn two-level corrector, used as an onboard targeting algorithm for the Trans-Earth Injection phase of Orion. A performance comparison between the impulsive and finite burn models is also presented. The present formulation ensures all entry constraints are met, without violating the available fuel budget, while allowing for low-thrust scenarios with long burn durations

    Similar works