research

Improving Cloud Detection in Satellite Images of Coral Reef Environments Using Space Shuttle Photographs and High-Definition Television

Abstract

Coral reefs worldwide are suffering from severe and rapid degradation (Bryant et A, 1998; Hoegh-Guldberg, 1999). Quick, consistent, large-scale assessment is required to assess and monitor their status (e.g., USDOC/NOAA NESDIS et al., 1999). On-going systematic collection of high resolution digital satellite data will exhaustively complement the relatively small number of SPOT, Landsat 4-5, and IRS scenes acquired for coral reefs the last 20 years. The workhorse for current image acquisition is the Landsat 7 ETM+ Long Term Acquisition Plan (Gasch et al. 2000). Coral reefs are encountered in tropical areas and cloud contamination in satellite images is frequently a problem (Benner and Curry 1998), despite new automated techniques of cloud cover avoidance (Gasch and Campana 2000). Fusion of multidate acquisitions is a classical solution to solve the cloud problems. Though elegant, this solution is costly since multiple images must be purchased for one location; the cost may be prohibitive for institutions in developing countries. There are other difficulties associated with fusing multidate images as well. For example, water quality or surface state can significantly change through time in coral reef areas making the bathymetric processing of a mosaiced image strenuous. Therefore, another strategy must be selected to detect clouds and improve coral reefs mapping. Other supplemental data could be helpful and cost-effective for distinguishing clouds and generating the best possible reef maps in the shortest amount of time. Photographs taken from the 1960s to the present from the Space Shuttle and other human-occupied spacecraft are one under-used source of alternative multitemporal data (Lulla et al. 1996). Nearly 400,000 photographs have been acquired during this period, an estimated 28,000 of these taken to date are of potential value for reef remote sensing (Robinson et al. 2000a). The photographic images can be digitized into three bands (red, green and blue) and processed for various applications (e.g., Benner and Curry 1998, Nedeltchev 1999, Glasser and Lulla 2000, Robinson et al. 2000c, Webb et al, in press)

    Similar works