Probabilistic Modeling for Game Content Creation and Adaption

Abstract

Dynamic Difficulty Adjustment studies how games can adapt content totheir users’ skill level, aiming to keep them in flow. Most of these methodsmaximize engagement or minimize churn by adapting factors like the opponentAI or the availability of resources. However, such methods do notmaintain a model of the player, and use technologies that are highly specificto the games in which they are tested (e.g. requiring forward modelsfor enemy AIs based on planning agents). Designers may also intend tofind content that is more difficult/easier on purpose, and current methodsdo not allow for such targeting.This thesis proposes and tests a framework for adapting game content tousers based on Bayesian Optimization, giving designers flexibility whenchoosing which skill level to target. Starting with a design space, a metricto be measured, a prior over this metric, and a target value, our frameworkquickly searches possible levels/tasks for one with ideal difficulty (i.e. closeto the specified target). In the process, our framework maintains a simpledata-driven model of the player, which could be used for further decisionmakingand analysis.We test this framework in two settings: adapting content to planning agentsbased on search algorithms likeMonte Carlo Tree Search and Rolling HorizonEvolution in a dungeon crawler-type game, and adapting both Sudokupuzzles and dungeon crawler levels to players. Our framework successfullyadapts content to planning agents as long as their skill level is not extreme,and takes roughly 7 iterations to find an appropriate Sudoku puzzle.Additionally, instead of relying on designers to specify a real-valued encodingof the content (e.g. the number of pre-filled cells in a Sudoku puzzle),we investigate learning this encoding automatically usingDeep GenerativeModels. In other words, we explore design spaces learned as latent spacesof Variational Autoencoders using tile-based representations of games likeSuperMario Bros and The Legend of Zelda.Our final contribution is a novel way of interpolating, sampling and optimizingin the playable regions of latent spaces of Variational Autoencoders,and addresses the challenge that generative models are not always guaranteedto decode playable content. This contribution, based on differentialgeometry, is inspired by recent advancements in domains like robotics andproteinmodeling. We combine these ideas of safe generation with contentoptimization and propose a restricted version of Bayesian Optimization,which optimizes content inside playable regions. We see a clear trade-off:restricting the latent space to playable regions decreases the diversity ofthe generated content, as well as the quality of the optimal values in theoptimization.In summary, this thesis studies applications of Bayesian Optimization andDeep Generative Models to the problem of creating and adapting gamecontent to users. We develop a framework that quickly finds relevant levelsin settings varying from corpora of levels to the latent spaces of generativemodels, and we show in experiments involving both human and artificialplayers that this framework finds appropriate game content in a few iterations.This framework is readily applicable, and could be used to creategames that learn and adapt to their players.<br/

    Similar works