Nondestructive Crack Detection in a Fuel System Component

Abstract

The paper discusses development of various NDE techniques to detect cracks in A40 steel poppets used in a valve of the fuel system of the Space Shuttle Orbiter. The valve assembly experiences a severe high cycle fatigue environment during its operation. Cracks were discovered at the radius of the poppet flange. Experience shows that very small cracks or material anomalies do not cause failure in a single operation event. While the design is being modified to eliminate the issue, NDE has been used to screen the poppets for cracks before every use. Several surface flaw detection techniques were considered and a few NDE techniques were developed to provide NDE screening for the flaw detection. The primary method used was the eddy current testing. In the eddy current technique, the X-Y channel test data from the eddy current instrument was recorded as computer files. A Matlab data review and plotting application was developed to analyze the data files. The Matlab application provides much higher resolution than the eddy current instrument that was used to acquire the data. Other techniques that were used included ultrasonic surface wave and magnetic particle testing. A probability of detection (POD) study was undertaken to determine the 90/95 size for the eddy current technique. This study used specimens with same geometry and material as the poppet. Fatigue cracks were grown in these specimens. Information on results of the NDE techniques and results of the POD study are provided

    Similar works

    Full text

    thumbnail-image