Differential Analysis on Simeck and SIMON with Dynamic Key-guessing Techniques

Abstract

The Simeck family of lightweight block ciphers was proposed in CHES 2015 which combines the good design components from NSA designed ciphers SIMON and SPECK. Dynamic key-guessing techniques were proposed by Wang {\it et al.} to greatly reduce the key space guessed in differential cryptanalysis and work well on SIMON. In this paper, we implement the dynamic key-guessing techniques in a program to automatically give out the data in dynamic key-guessing procedure and thus simplify the security evaluation of SIMON and Simeck like block ciphers regarding differential attacks. We use the differentials from Kölbl {\it et al.}\u27s work and also a differential with lower Hamming weight we find using Mixed Integer Linear Programming method to attack 22-round Simeck32, 28-round Simeck48 and 35-round Simeck64. Besides, we launch the same attack procedure on four members of SIMON family by use of newly proposed differentials in CRYPTO2015 and get new attack results on 22-round SIMON32/64, 24-round SIMON48/96, 28, 29-round SIMON64/96 and 29, 30-round SIMON64/128. As far as we are concerned, our results on SIMON64 are currently the best results

    Similar works