Secure Message Transmission In Asynchronous Directed Networks

Abstract

We study the problem of information-theoretically secure message transmission (SMT) in asynchronous directed networks. In line with the literature, the distrust and failures of the network is captured via a computationally unbounded Byzantine adversary that may corrupt some subset of nodes. We give a characterization of networks over which SMT from sender S to receiver R is possible in both the well-known settings, namely perfect SMT (PSMT) and unconditional SMT (USMT). We distinguish between two variants of USMT: one in which R can output an incorrect message (with small probability) and another in which R never outputs a wrong message, but may choose to abort (with small probability). We also provide efficient protocols for an important class of networks

    Similar works