research

F-15B Quiet Spike(TradeMark) Aeroservoelastic Flight-Test Data Analysis

Abstract

System identification is utilized in the aerospace community for development of simulation models for robust control law design. These models are often described as linear, time-invariant processes and assumed to be uniform throughout the flight envelope. Nevertheless, it is well known that the underlying process is inherently nonlinear. Over the past several decades the controls and biomedical communities have made great advances in developing tools for the identification of nonlin ear systems. In this report, we show the application of one such nonlinear system identification technique, structure detection, for the an alysis of Quiet Spike(TradeMark)(Gulfstream Aerospace Corporation, Savannah, Georgia) aeroservoelastic flight-test data. Structure detectio n is concerned with the selection of a subset of candidate terms that best describe the observed output. Structure computation as a tool fo r black-box modeling may be of critical importance for the development of robust, parsimonious models for the flight-test community. The ob jectives of this study are to demonstrate via analysis of Quiet Spike(TradeMark) aeroservoelastic flight-test data for several flight conditions that: linear models are inefficient for modelling aeroservoelast ic data, nonlinear identification provides a parsimonious model description whilst providing a high percent fit for cross-validated data an d the model structure and parameters vary as the flight condition is altered

    Similar works