research

Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling

Abstract

Independent prognostic variables in cloud-resolving modeling are chosen on the basis of the analysis of microphysical timescales in clouds versus a time step for numerical integration. Two of them are the moist entropy and the total mixing ratio of airborne water with no contributions from precipitating particles. As a result, temperature can be diagnosed easily from those prognostic variables, and cloud microphysics be separated (or modularized) from moist thermodynamics. Numerical comparison experiments show that those prognostic variables can work well while a large time step (e.g., 10 s) is used for numerical integration

    Similar works