research

Coupled Groups of g-Modes in a Sun with Mixed Core

Abstract

Groups of linear g-modes can sum to create long-lived nonlinear oscillations in small "hot volumes" very deep in the Sun that help drive the modes. In these volumes (dimensions -10 Mm), the time average rate of He-3 burning doubles as temperature fluctuations exceed 10% and rises by an order of magnitude for fluctuations of 25%. To be consistent with locally large motions, we impose a mixed shell on an otherwise standard solar model before computing g-mode solutions. Mixing in the assumed shell r = (0.10+/-0.03) R(sub sun) is rapid ( 3. A formalism is presented for summing the g-modes and estimating growth rates under the approximation that modes are strictly linear except in a hot volume which holds only a few percent of mode kinetic energy. Finally over the range 2 less than or equal to l less than or equal to 30, we summed all zonal harmonics, m, for a given l and computed the relative angular orientations that would release the most nuclear energy. This should be close to the physically preferred angular state of such a family and a few examples were displayed

    Similar works