research

Seal Investigations of an Active Clearance Control System Concept

Abstract

In an effort to improve upon current thermal active clearance control methods, a first generation, fast-acting mechanically actuated, active clearance control system has been designed and installed into a non-rotating test rig. In order to harvest the benefit of tighter blade tip clearances, low-leakage seals are required for the actuated carrier segments of the seal shroud to prevent excessive leakage of compressor discharge (P3) cooling air. The test rig was designed and fabricated to facilitate the evaluation of these types of seals, identify seal leakage sources, and test other active clearance control system concepts. The objective of this paper is to present both experimental and analytical investigations into the nature of the face-seal to seal-carrier interface. Finite element analyses were used to examine face seal contact pressures and edge-loading under multiple loading conditions, varied E-seal positions and two new face seal heights. The analyses indicated that moving the E-seal inward radially and reducing face seal height would lead to more uniform contact conditions between the face seal and the carriers. Lab testing confirmed that moving the balance diameter inward radially caused a decrease in overall system leakage

    Similar works