Quantum computers are nearing the thousand qubit mark, with the current focus
on scaling to improve computational performance. As quantum processors grow in
complexity, new challenges arise such as the management of device variability
and the interface with supporting electronics. Spin qubits in silicon quantum
dots are poised to address these challenges with their proven control
fidelities and potential for compatibility with large-scale integration. Here,
we demonstrate the integration of 1024 silicon quantum dots with on-chip
digital and analogue electronics, all operating below 1 K. A high-frequency
analogue multiplexer provides fast access to all devices with minimal
electrical connections, enabling characteristic data across the quantum dot
array to be acquired in just 5 minutes. We achieve this by leveraging
radio-frequency reflectometry with state-of-the-art signal integrity, reaching
a minimum integration time of 160 ps. Key quantum dot parameters are extracted
by fast automated machine learning routines to assess quantum dot yield and
understand the impact of device design. We find correlations between quantum
dot parameters and room temperature transistor behaviour that may be used as a
proxy for in-line process monitoring. Our results show how rapid large-scale
studies of silicon quantum devices can be performed at lower temperatures and
measurement rates orders of magnitude faster than current probing techniques,
and form a platform for the future on-chip addressing of large scale qubit
arrays.Comment: Main text: 14 pages, 8 figures, 1 table Supplementary: 8 pages, 6
figure