Abstract

We present a comprehensive study of the molecular gas properties of 17 Type 2 quasars at zz 10^{42.1} \rm ergs^{-1}),selectedbytheirhigh[OIII]luminositiesanddisplayingalargediversityofradiojetproperties,butdominatedbyLIRG−likegalaxies.Withthesedata,weareabletoinvestigatetheimpactofAGNandAGNfeedbackmechanismsontheglobalmolecularinterstellarmedium.UsingAPEXandALMAACAobservations,wemeasurethetotalmoleculargascontentusingtheCO(1−0)emissionandhomogeneouslysampletheCOspectrallineenergydistributions(SLEDs),observingCOtransitions(J), selected by their high [OIII] luminosities and displaying a large diversity of radio jet properties, but dominated by LIRG-like galaxies. With these data, we are able to investigate the impact of AGN and AGN feedback mechanisms on the global molecular interstellar medium. Using APEX and ALMA ACA observations, we measure the total molecular gas content using the CO(1-0) emission and homogeneously sample the CO spectral line energy distributions (SLEDs), observing CO transitions (J_{up}=1,2,3,6,7).Weobservehigh = 1, 2, 3, 6, 7). We observe high r_{21}ratios(r ratios (r_{21}=L′ = L'_{CO(2-1)}/L′/L'_{CO(1-0)})withamedian) with a median r_{21}=1.06,similartolocal(U)LIRGs(with = 1.06, similar to local (U)LIRGs (with r_{21} \sim1)andhigherthannormalstar−forminggalaxies(withr 1) and higher than normal star-forming galaxies (with r_{21} \sim0.65).Despitethehigh 0.65). Despite the high r_{21} values, for the 7 targets with the required data we find low excitation in CO(6-5) & CO(7-6) (r_{61}and and r_{62}$ < 0.6 in all but one target), unlike high redshift quasars in the literature, which are far more luminous and show higher line ratios. The ionised gas traced by [OIII] exhibit systematically higher velocities than the molecular gas traced by CO. We conclude that any effects of quasar feedback (e.g. via outflows and radio jets) do not have a significant instantaneous impact on the global molecular gas content and excitation and we suggest that it only occurs on more localised scales.Comment: 32 pages (20 in the main body of the paper and 12 in the appendix), 28 figures (10 in main body of paper and 18 in appendix) Accepted for publication in MNRAS. Data available at https://doi.org/10.25405/data.ncl.2431250

    Similar works

    Full text

    thumbnail-image

    Available Versions