Generalized Multi-Level Replanning TAMP Framework for Dynamic Environment

Abstract

Task and Motion Planning (TAMP) algorithms can generate plans that combine logic and motion aspects for robots. However, these plans are sensitive to interference and control errors. To make TAMP more applicable in real-world, we propose the generalized multi-level replanning TAMP framework(GMRF), blending the probabilistic completeness of sampling-based TAMP algorithm with the robustness of reactive replanning. GMRF generates an nominal plan from the initial state, then dynamically reconstructs this nominal plan in real-time, reorders robot manipulations. Following the logic-level adjustment, GMRF will try to replan a new motion path to ensure the updated plan is feasible at the motion level. Finally, we conducted real-world experiments involving stack and rearrange task domains. The result demonstrate GMRF's ability to swiftly complete tasks in scenarios with varying degrees of interference

    Similar works

    Full text

    thumbnail-image

    Available Versions