Long-term Orbital Period Variation of Hot Jupiters from Transiting Time Analysis using TESS Survey Data

Abstract

Many hot Jupiters may experience orbital decays, which are manifested as long-term transit timing variations. We have analyzed 7068 transits from the Transiting Exoplanet Survey Satellite (TESS) for a sample of 326 hot Jupiters. These new mid-transit time data allow us to update ephemerides for these systems. By combining the new TESS transit timing data with archival data, we search for possible long-term orbital period variations in these hot Jupiters using a linear and a quadratic ephemeris model. We identified 26 candidates that exhibit possible long-term orbital period variations, including 18 candidates with decreasing orbital periods and 8 candidates with increasing orbital periods. Among them, 12 candidates have failed in our leave-one-out cross-validation (LOOCV) test and thus should be considered as marginal candidates. In addition to tidal interaction, alternative mechanisms such as apsidal precession, R{\o}mer effect, and Applegate effect could also contribute to the observed period variations. The ephemerides derived in this work are useful for scheduling follow-up observations for these hot Jupiters in the future. The Python code used to generate the ephemerides is made available online.Comment: Accepted for publication in ApJ

    Similar works

    Full text

    thumbnail-image

    Available Versions