Robust and Deterministic Preparation of Bosonic Logical States in a Trapped Ion

Abstract

Encoding logical qubits in bosonic modes provides a potentially hardware-efficient implementation of fault-tolerant quantum information processing. Recent advancements in trapped ions and superconducting microwave cavities have led to experimental realizations of high-quality bosonic states and demonstrations of error-corrected logical qubits encoded in bosonic modes. However, current protocols for preparing bosonic code words lack robustness to common noise sources and can be experimentally challenging to implement, limiting the quality and breadth of codes that have been realized to date. Here, we combine concepts of error suppression via robust control with quantum error correction encoding and experimentally demonstrate high-fidelity, deterministic preparation of highly non-classical target bosonic states in the mechanical motion of a trapped ion. Our approach implements numerically optimized dynamical modulation of laser-driven spin-motion interactions to generate the target state in a single step. The optimized control pulses are tailored towards experimental constraints and are designed to be robust against the dominant source of error. Using these protocols, we demonstrate logical fidelities for the Gottesman-Kitaev-Preskill (GKP) state as high as Fˉ=0.940(8)\bar{\mathcal{F}}=0.940(8), achieve the first realization of a distance-3 binomial logical state with an average fidelity of F=0.807(7)\mathcal{F}=0.807(7), and demonstrate a 12.91(5) dB squeezed vacuum state.Comment: 12 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions