Optical payload design for downlink quantum key distribution and keyless communication using CubeSats

Abstract

Quantum key distribution is costly and, at the moment, offers low performance in space applications. Other more recent protocols could offer a potential practical solution to this problem. In this work, a preliminary optical payload design using commercial off-the-shelf elements for a quantum communication downlink in a 3U CubeSat is proposed. It is shown that this quantum state emitter allows the establishment of two types of quantum communication between the satellite and the ground station: quantum key distribution and quantum keyless private communication. Numerical simulations are provided that show the feasibility of the scheme for both protocols as well as their performance. For the simplified BB84, a maximum secret key rate of about 80 kHz and minimum QBER of slightly more than 0.07 %0.07\ \% is found, at the zenith, while for quantum private keyless communication, a 700 MHz private rate is achieved. This design serves as a platform for the implementation of novel quantum communication protocols that can improve the performance of quantum communications in space.Comment: 24 pages, 9 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions