Imperfect Digital Twin Assisted Low Cost Reinforcement Training for Multi-UAV Networks

Abstract

Deep Reinforcement Learning (DRL) is widely used to optimize the performance of multi-UAV networks. However, the training of DRL relies on the frequent interactions between the UAVs and the environment, which consumes lots of energy due to the flying and communication of UAVs in practical experiments. Inspired by the growing digital twin (DT) technology, which can simulate the performance of algorithms in the digital space constructed by coping features of the physical space, the DT is introduced to reduce the costs of practical training, e.g., energy and hardware purchases. Different from previous DT-assisted works with an assumption of perfect reflecting real physics by virtual digital, we consider an imperfect DT model with deviations for assisting the training of multi-UAV networks. Remarkably, to trade off the training cost, DT construction cost, and the impact of deviations of DT on training, the natural and virtually generated UAV mixing deployment method is proposed. Two cascade neural networks (NN) are used to optimize the joint number of virtually generated UAVs, the DT construction cost, and the performance of multi-UAV networks. These two NNs are trained by unsupervised and reinforcement learning, both low-cost label-free training methods. Simulation results show the training cost can significantly decrease while guaranteeing the training performance. This implies that an efficient decision can be made with imperfect DTs in multi-UAV networks

    Similar works

    Full text

    thumbnail-image

    Available Versions