Profile hidden Markov models (pHMMs) are widely employed in various
bioinformatics applications to identify similarities between biological
sequences, such as DNA or protein sequences. In pHMMs, sequences are
represented as graph structures. These probabilities are subsequently used to
compute the similarity score between a sequence and a pHMM graph. The
Baum-Welch algorithm, a prevalent and highly accurate method, utilizes these
probabilities to optimize and compute similarity scores. However, the
Baum-Welch algorithm is computationally intensive, and existing solutions offer
either software-only or hardware-only approaches with fixed pHMM designs. We
identify an urgent need for a flexible, high-performance, and energy-efficient
HW/SW co-design to address the major inefficiencies in the Baum-Welch algorithm
for pHMMs.
We introduce ApHMM, the first flexible acceleration framework designed to
significantly reduce both computational and energy overheads associated with
the Baum-Welch algorithm for pHMMs. ApHMM tackles the major inefficiencies in
the Baum-Welch algorithm by 1) designing flexible hardware to accommodate
various pHMM designs, 2) exploiting predictable data dependency patterns
through on-chip memory with memoization techniques, 3) rapidly filtering out
negligible computations using a hardware-based filter, and 4) minimizing
redundant computations.
ApHMM achieves substantial speedups of 15.55x - 260.03x, 1.83x - 5.34x, and
27.97x when compared to CPU, GPU, and FPGA implementations of the Baum-Welch
algorithm, respectively. ApHMM outperforms state-of-the-art CPU implementations
in three key bioinformatics applications: 1) error correction, 2) protein
family search, and 3) multiple sequence alignment, by 1.29x - 59.94x, 1.03x -
1.75x, and 1.03x - 1.95x, respectively, while improving their energy efficiency
by 64.24x - 115.46x, 1.75x, 1.96x.Comment: Accepted to ACM TAC