Characterization of Side Load Phenomena Using Measurement of Fluid/Structure Interaction
- Publication date
- Publisher
Abstract
During ground-tests of most production rocket engines over the last 30 years, large asymmetric transient side loads coming from the nozzle and related steady-state vibrational loads within the nozzle have been measured. The widely varying magnitude of these loads has been large enough to fail interfacing components as well as nozzles in these engines. This paper will discuss a comprehensive test and analysis program that has been undertaken to develop a methodology to accurately predict the character and magnitude of this loading. The project to-date has incorporated analytical modeling of both the fluid flow and the nozzle structure and testing of both full-scale and sub-scale rocket nodes. Examination of the test data indicates that one of the two-nodal diameter structural modes may be interacting with flow separation from the nozzle inside-wall in a self-excited or aeroelastic vibration phenomenon. If verified, this observation will be used to develop a methodology for design and analysis. A fuller understanding of the characteristics of this vibration will provide an increase in the accuracy and confidence of side load predictions, which will be critical for the successful construction of the next generation of low-cost, reliable rocket engines