research

Estimating Lunar Pyroclastic Deposit Depth from Imaging Radar Data: Applications to Lunar Resource Assessment

Abstract

Lunar pyroclastic deposits represent one of the primary anticipated sources of raw materials for future human settlements. These deposits are fine-grained volcanic debris layers produced by explosive volcanism contemporaneous with the early stage of mare infilling. There are several large regional pyroclastic units on the Moon (for example, the Aristarchus Plateau, Rima Bode, and Sulpicius Gallus formations), and numerous localized examples, which often occur as dark-halo deposits around endogenic craters (such as in the floor of Alphonsus Crater). Several regional pyroclastic deposits were studied with spectral reflectance techniques: the Aristarchus Plateau materials were found to be a relatively homogeneous blanket of iron-rich glasses. One such deposit was sampled at the Apollo 17 landing site, and was found to have ferrous oxide and titanium dioxide contents of 12 percent and 5 percent, respectively. While the areal extent of these deposits is relatively well defined from orbital photographs, their depths have been constrained only by a few studies of partially filled impact craters and by imaging radar data. A model for radar backscatter from mantled units applicable to both 70-cm and 12.6-cm wavelength radar data is presented. Depth estimates from such radar observations may be useful in planning future utilization of lunar pyroclastic deposits

    Similar works