Comparing a Hybrid Multi-layered Machine Learning Intrusion Detection System to Single-layered and Deep Learning Models

Abstract

Advancements in computing technology have created additional network attack surface, allowed the development of new attack types, and increased the impact caused by an attack. Researchers agree, current intrusion detection systems (IDSs) are not able to adapt to detect these new attack forms, so alternative IDS methods have been proposed. Among these methods are machine learning-based intrusion detection systems. This research explores the current relevant studies related to intrusion detection systems and machine learning models and proposes a new hybrid machine learning IDS model consisting of the Principal Component Analysis (PCA) and Support Vector Machine (SVM) learning algorithms. The NSL-KDD Dataset, benchmark dataset for IDSs, is used for comparing the models’ performance. The performance accuracy and false-positive rate of the hybrid model are compared to the results of the model’s individual algorithmic components to determine which components most impact attack prediction performance. The performance metrics of the hybrid model are also compared to two deep learning Autoencoder Neuro Network models and the results found that the complexity of the model does not add to the performance accuracy. The research showed that pre-processing and feature selection impact the predictive accuracy across models. Future research recommendations were to implement the proposed hybrid IDS model into a live network for testing and analysis, and to focus research into the pre-processing algorithms that improve performance accuracy, and lower false-positive rate. This research indicated that pre-processing and feature selection/feature extraction can increase model performance accuracy and decrease false-positive rate helping businesses to improve network security

    Similar works