CASPR2 autoimmune antibodies modify the developmental trajectory and network activity in human brain organoids

Abstract

Recent decades have seen great expansion on our understanding on how neurons communicate and process information, however, limited access to human brain samples is a critical aspect preventing a greater understanding on the cellular and molecular mechanisms underlying brain diseases. Additionally, animal models and in vitro two-dimensional (2D) cell cultures fail to mimic the unique cellular and molecular physiology of the human brain. Recently, the development of human brain organoids has presented a new tool that may facilitate the study of functional human synapses and neuronal networks, that may further our understanding of disease mechanisms. Gestational transfer of brain-reactive antibodies is an important environmental risk factor triggering neurodevelopmental disorders. CASPR2 is encoded by CNTNAP2, an autism susceptibility gene and is a known target for pathogenic maternal autoantibodies that can interfere with fetal neurodevelopment. CASPR2 was originally described to be involved in the stabilization of voltage-gated potassium channels (Kv1.1 and Kv1.2) in myelinated axons, and later to have a role in earlier phases of rodent brain development. However, the effects induced by the presence of anti-CASPR2 antibodies (anti-CASPR2- Ab) during human brain development have not yet been addressed. To tackle this gap in knowledge we cultured human brain organoids for a period of up to 6-months in media containing human anti-CASPR2-Ab. We found that this challenge produced a decrease in CASPR2 and Contactin-2 protein levels, altered spontaneous synaptic activity, and led to an increase in the frequency of action potential firing upon current injection. These alterations were consistent with change in action potential kinetics, suggestive of altered function in voltage-gated potassium channels. In line with these observations, we also observed an overall increase in network activity in acute brain organoid slices. In parallel with this work, we also produced brain organoids from human induced pluripotent stem cells (hiPSCs) generated de novo from individuals carrying a genetic mutation associated with a neurological disease. The resulting mutated organoids recapitulated the genetic and molecular features of the original patients’ cells and offer a platform for further studying the mechanisms associated with the disease. Therefore, our data highlights the value of using brain organoids as robust models to study brain development and neurological disorders. These models may ultimately allow us to interpret the underlying neurobiological mechanisms associated with several disorders and lay the groundwork for identifying and testing novel therapeutic approaches.Nas últimas décadas temos visto uma grande expansão na nossa compreensão sobre como os neurónios comunicam e processam informação, no entanto, o acesso limitado a amostras de cérebro humano é um aspeto crítico que impede uma maior compreensão sobre os mecanismos celulares e moleculares subjacente às doenças cerebrais. Adicionalmente, modelos animais e culturas celulares bidimensionais (2D) in vitro não conseguem mimetizar a fisiologia celular e molecular única do cérebro humano. Recentemente, o desenvolvimento de organoides cerebrais humanos tem apresentado uma nova ferramenta que pode facilitar o estudo de sinapses humanas funcionais e redes neuronais, o que pode aprofundar a nossa compreensão dos mecanismos da doença. A transferência gestacional de anticorpos cerebrais reativos é um importante fator de risco ambiental que pode desencadear doenças do neurodesenvolvimento. CASPR2 é codificada por CNTNAP2, um gene de suscetibilidade ao autismo, e é um alvo conhecido de autoanticorpos maternos patogénicos que podem interferir com o neurodesenvolvimento do feto. CASPR2 foi inicialmente descrita como estando envolvida na estabilização dos canais de potássio sensíveis à voltagem (Kv1.1 e Kv1.2) nos axónios mielinizados e, mais tarde, por ter um papel em fases mais precoces do desenvolvimento do cérebro de ratinhos. No entanto, os efeitos induzidos pela presença de anticorpos anti-CASPR2 (anti-CASPR2-Ab) durante o desenvolvimento do cérebro humano ainda não foram estudados. Para resolver esta lacuna no conhecimento, cultivámos organoides cerebrais humanos por um período de até 6 meses em meio contendo anti-CASPR2-Ab humanos. Descobrimos que este desafio levou a uma diminuição nos níveis de proteína CASPR2 e Contactin-2, alterou a atividade sináptica espontânea e levou a um aumento na frequência de disparo de potenciais de ação após injeção de corrente. Estas alterações foram consistentes com alteração na cinética dos potenciais de ação, sugestivo de alteração na função dos canais de potássio sensíveis à voltagem. Em linha com estas observações, também observámos um aumento geral na atividade de rede em fatias de organoides cerebrais. Em paralelo a este trabalho, também produzimos organoides cerebrais humanos a partir de células estaminais pluripotentes induzidas (hiPSCs) obtidas de novo de indivíduos portadores de uma mutação genética associada a uma doença neurológica. Os organoides resultantes recapitularam as características genéticas e moleculares das células originais dos doentes e oferecem uma plataforma para estudar mais aprofundadamente os mecanismos associados à doença. Deste modo, os nossos resultados destacam o valor do uso de organoides cerebrais como modelos robustos para estudar o desenvolvimento cerebral e distúrbios neurológicos. Estes modelos podem, em última análise, permitir-nos interpretar os mecanismos neurobiológicos subjacentes associados a várias doenças e fundamentar para a identificação e testagem de novas abordagens terapêuticas

    Similar works