Hydroxyapatite aerogels with piezoelectric particles for bone regeneration

Abstract

Several materials have been researched to replace the damaged tissues or assist in the regeneration pro-cesses of the bone. New strategies for designing advanced functional biomimetic structures are contin-uously being reviewed and optimized. Advances not only on the chemical composition of the implants but also on their physical surface play an important role in enhancing the functionality of implants. This dissertation focuses on the production of Hydroxyapatite (HAp) aerogels and aerogel composites of HAp with Barium Titanate (BaTiO3) particles for bone tissue regeneration. The aerogels are com-posed of HAp nanowires (NWs) produced through solvothermal synthesis and later freeze dried. All the commercially bought particles, 280nm, 2μm and 3μm, proved to contain BaTiO3 in its tetragonal phase when characterized by an XRD, FTIR and Raman analysis. A thermal analysis (DSC and TGA) of the particles allowed to observe a shift in the phase of BaTiO3, for the 280nm particles, around its Curie temperature, 130.6℃. The product of the solvothermal reaction at a temperature of 180℃ for 18hours was verified to be car-bonated Hydroxyapatite through a XRD and FTIR analysis. The aerogels with and without particles were observed with SEM, proving the existence of Hap wires, heterogeneous sized pores, as well as a good distribution of the BaTiO3 particles. The BaTiO3 particles proved to be non-cytotoxic while the fabricated aerogels with and without particles were considered cytotoxic, however, the higher surface of the aerogels and easy dissolution may have altered the results. In the assays of bioactivity assays, in SEM/EDS, difficulties were found when trying to differentiate between the apatite structures and the surface of the HAp wires. However, a quantitative EDS analysis shows that there is a possibly a cycle of CaP deposition followed by dissolution occurring.Diversos materiais têm sido investigados de modo a substituir tecidos danificados ou auxiliar nos pro-cessos regenerativos do osso. Novas estratégias de modo a produzir estruturas biomiméticas funcionais avançadas são continuamente revisadas e otimizadas. Avanços não apenas na composição química dos implantes, mas também na sua superfície física, desempenham um papel importante em melhorar a funcionalidade dos implantes. Esta dissertação dedica-se à produção de aerogéis de hidroxiapatite (HAp) e compostos de aerogel de HAp com partículas de Titanato de Bário (BaTiO3) para regeneração do tecido ósseo. Os aerogéis são compostos por nanofios (NWs) de HAp produzidos por meio de síntese solvotérmica e posteriormente liofilizados. Todas as partículas comerciais, 280nm, 2μm e 3μm, demonstraram a existência de BaTiO3 em fase tetragonal quando caracterizadas por uma análise de DRX, FTIR e Raman. Uma análise térmica (DSC e TGA) das partículas permitiu observar uma mudança na fase do BaTiO3 em torno de sua temperatura de Curie, 130.6 ℃, para as partículas de 280nm. O produto da reação solvotérmica a uma temperatura de 180℃ por 18 horas demonstrou ser hidroxia-patite carbonatada através de uma análise de DRX e FTIR. Os aerogéis com e sem partículas foram observados no SEM, comprovando a existência de fios de Hap, poros de tamanhos heterogêneos, bem como uma boa distribuição das partículas de BaTiO3. As partículas de BaTiO3 mostraram-se não citotóxicas enquanto os aerogéis fabricados com e sem par-tículas foram considerados citotóxicos, no entanto, a elevada área superficial dos aerogéis e fácil disso-lução podem ter alterado os resultados. Nos ensaios de bioatividade, encontrou-se dificuldade em diferenciar, no SEM/EDS, entre estruturas definidas de apatites e a superfície dos fios de HAp. No entanto, a análise quantitativa de EDS mostra que possivelmente existe um ciclo de deposição de CaP seguido de dissolução

    Similar works