The Application of the Modified Prim’s Algorithm to Restore the Power System Using Renewable Energy Sources

Abstract

The recent trends in the development of power systems are focused on the Self-Healing Grid technology fusing renewable energy sources. In the event of a failure of the power system, automated distribution grids should continue to supply energy to consumers. Unfortunately, there are currently a limited number of algorithms for rebuilding a power system with renewable energy sources. This problem is possible to solve by implementing restoration algorithms based on graph theory. This article presents the new modification of Prim’s algorithm, which has been adapted to operate on a power grid containing several power sources, including renewable energy sources. This solution is unique because Prim’s algorithm is ultimately dedicated to single-source graph topologies, while the proposed solution is adapted to multi-source topologies. In the algorithm, the power system is modeled by the adjacency matrices. The adjacency matrixes for the considered undirected graphs are symmetric. The novel logic is based on the original method of determining weights depending on active power, reactive power and active power losses. The developed solution was verified by performing a simulation on a test model of the distribution grid powered by a renewable energy source. The control logic concept was compared with the reference algorithms, which were chosen from the ideas representing available approaches based on graph theory present in the scientific publications. The conducted research confirmed the effectiveness and validity of the novel restoration strategy. The presented algorithm may be applied as a restoration logic dedicated to power distribution systems

    Similar works

    Full text

    thumbnail-image