Two G-proteins act in series to control stimulus-secretion coupling in mast cells: use of neomycin to distinguish between G-proteins controlling polyphosphoinositide phosphodiesterase and exocytosis

Abstract

Provision of GTP (or other nucleotides capable of acting as ligands for activation of G-proteins) together with Ca2+ (at micromolar concentrations) is both necessary and sufficient to stimulate exocytotic secretion from mast cells permeabilized with streptolysin-O. GTP and its analogues, through their interactions with Gp, also activate polyphosphoinositide-phosphodiesterase (PPI-pde generating inositol 1,4,5-trisphosphate and diglyceride [DG]). We have used mast cells labeled with [3H]inositol to test whether the requirement for GTP in exocytosis is an expression of Gp activity through the generation of DG and consequent activation of protein kinase C, or whether GTP is required at a later stage in the stimulus secretion sequence. Neomycin (0.3 mM) inhibits activation of PPI-pde, but maximal secretion due to optimal concentrations of guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) can still be evoked in its presence. When ATP is also provided the concentration requirement for GTP-gamma-S in support of exocytosis is reduced. This sparing effect of ATP is nullified when the PPI-pde reaction is inhibited by neomycin. We argue that the sparing effect of ATP occurs as a result of enhancement of DG production and through its action as a phosphoryl donor in the reactions catalyzed by protein kinase C

    Similar works