Aldh1b1-mediated metabolism regulates pancreas progenitor differentiation and β-cell maturation


Pancreatic β-cells have a central function in the regulation of glucose homeostasis by releasing the blood sugar-lowering hormone insulin. Disruption of this process results in diabetes, which has a tremendous impact on the quality of life and requires lifelong treatment. Elucidating the mechanisms of pancreatic progenitor cell differentiation into fully functional β-cells will contribute to identifying the underlying reasons for β-cell dysfunction and to finding a cure for diabetes. Aldh1b1 was identified by our research group as a regulator of pancreas development and β-cell functionality. Aldh1b1 is a mitochondrial enzyme, expressed in all embryonic pancreas progenitors. Its expression is switched off during the process of differentiation and is undetectable in differentiated cells. Functional inactivation of Aldh1b1 in the mouse leads to premature differentiation of progenitor cells in the embryo and dysfunctional β-cells in the adult. However, the enzymatic function of Aldh1b1 in pancreas progenitors and how it ultimately affects β-cell functionality remained to be elucidated. In this study, I analyzed the role of Aldh1b1 in the metabolism of embryonic pancreas progenitor cells and its impact on chromatin structure and gene expression in both, progenitors and postnatal β-cells. Flow cytometry analysis of freshly isolated Aldh1b1 null embryonic pancreas progenitors showed a significant increase in ROS levels as well as a significant decrease in mitochondrial mass, whereas the mitochondrial membrane potential was not affected. To elucidate the impact of Aldh1b1 on cellular metabolism, I conducted metabolic flux experiments and untargeted metabolomics studies using FACS-isolated embryonic pancreas progenitors expanded in a 3D spheroid culture. Analyses following metabolic labeling with either 13C6-Glucose or 13C2-Glutamine showed that the absence of Aldh1b1 lead to an increase of the reductive glutamine metabolism towards citrate, a reaction that channels carbon units into the acetyl-CoA biosynthesis. However, the ACLy-dependent flux towards acetyl-coA synthesis was reduced and this was consistent with reduced expression of ACLy as well as the citrate transporter SLC25a1. A decrease in cellular acetyl-CoA would reduce histone acetylation. Untargeted metabolomics showed an increase in the concentration of S-adenosyl-methionine, suggesting increased DNA and histone methylation. Consistent with these findings, ATAC-Seq analyses on freshly isolated pancreatic progenitors showed reduced chromatin accessibility at genes implicated in chromatin organization, protein acetylation and histone modification. Transcription motif analysis showed that the affected genomic sites were mainly associated with the binding of Klf/Sp and Nrf1 transcription factors. Transcriptome analyses displayed that the expression of genes implicated in progenitor differentiation, ECM organization and transcriptional regulation was affected. Furthermore, transcriptome analyses of early postnatal β-cells uncovered early signs of oxidative stress and increased proliferation, thus providing the basis to explain the β-cell phenotype in Aldh1b1 null mice. I then used organotypic cultures of embryonic pancreata to investigate the connection between high ROS levels and aberrant differentiation in the Aldh1b1 null pancreata. Reducing ROS levels using NAC enabled the reversal of the aberrant transcription factor expression and increased viability of Aldh1b1 null explants, thus identifying high ROS levels as a driving force in this process. To investigate how persisting Aldh1b1 expression would affect progenitor differentiation, I generated ROSA26LSLAldh1b1, an inducible constitutive Aldh1b1 expression line. Progenitors with continuous Aldh1b1 expression avoided the endocrine cell fate, underscoring the importance of timely Aldh1b1 downregulation in the course of β-cell differentiation. Altogether, my work provides strong evidence for the role of Aldh1b1 as a metabolic regulator in the process of progenitor cell differentiation and identifies a link between metabolism and gene regulation through chromatin accessibility during development. Aldh1b1 inactivity causes defects in embryonic progenitor cells as well as postnatal β-cells and could therefore contribute, as genetic risk factor, to the development of hyperglycemia and diabetes later in life. Comprehending the mechanisms underlying the process of pancreas progenitor differentiation as well as the origins of β cell dysfunction should assist in the design of novel therapeutic interventions for diabetes

    Similar works