research

Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data

Abstract

On-device machine learning (ML) enables the training process to exploit a massive amount of user-generated private data samples. To enjoy this benefit, inter-device communication overhead should be minimized. With this end, we propose federated distillation (FD), a distributed model training algorithm whose communication payload size is much smaller than a benchmark scheme, federated learning (FL), particularly when the model size is large. Moreover, user-generated data samples are likely to become non-IID across devices, which commonly degrades the performance compared to the case with an IID dataset. To cope with this, we propose federated augmentation (FAug), where each device collectively trains a generative model, and thereby augments its local data towards yielding an IID dataset. Empirical studies demonstrate that FD with FAug yields around 26x less communication overhead while achieving 95-98% test accuracy compared to FL.Comment: presented at the 32nd Conference on Neural Information Processing Systems (NIPS 2018), 2nd Workshop on Machine Learning on the Phone and other Consumer Devices (MLPCD 2), Montr\'eal, Canad

    Similar works

    Full text

    thumbnail-image

    Available Versions