Automatic Extraction of Measurement-Based Large-Signal FET Models by Nonlinear Function Sampling.

Abstract

A new method is proposed for the accurate experimental characterization and fully automated extraction of compact nonlinear models for Field-Effect Transistors (FETs). The approach, which leads to a charge-conservative description, is based on a single large-signal measurement under a two-tone sinusoidal wave excitation. A suitable choice of tone frequencies, amplitudes, and bias allows to adequately characterize the transistor over the whole safe operating region. The voltage controlled nonlinear functions describing the two-port FET model can be computed over an arbitrarily dense voltage domain by solving an overdetermined system of linear equations. These equations are expressed in terms of a new Nonlinear Function Sampling operator based on a bi-periodic Fourier series description of the acquired frequency spectra. The experimental validation is carried out on a 0.25-μm Gallium Nitride (GaN) on Silicon Carbide (SiC) High-Electron Mobility Transistor (HEMT) under continuous-wave (CW) and two-tone excitation (intermodulation distortion test).This project was partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades in the frame of ‘Salvador de Madariaga’ Program PRX18/00108

    Similar works