Generative Neural Radiance Fields (GNeRF) based 3D-aware GANs have
demonstrated remarkable capabilities in generating high-quality images while
maintaining strong 3D consistency. Notably, significant advancements have been
made in the domain of face generation. However, most existing models prioritize
view consistency over disentanglement, resulting in limited semantic/attribute
control during generation. To address this limitation, we propose a conditional
GNeRF model incorporating specific attribute labels as input to enhance the
controllability and disentanglement abilities of 3D-aware generative models.
Our approach builds upon a pre-trained 3D-aware face model, and we introduce a
Training as Init and Optimizing for Tuning (TRIOT) method to train a
conditional normalized flow module to enable the facial attribute editing, then
optimize the latent vector to improve attribute-editing precision further. Our
extensive experiments demonstrate that our model produces high-quality edits
with superior view consistency while preserving non-target regions. Code is
available at https://github.com/zhangqianhui/TT-GNeRF.Comment: 13 page