On a conjecture of Ram\'{\i}rez Alfons\'{\i}n and Ska{\l}ba II

Abstract

Let 1<c<d1<c<d be two relatively prime integers and gc,d=cdβˆ’cβˆ’dg_{c,d}=cd-c-d. We confirm, by employing the Hardy--Littlewood method, a 2020 conjecture of Ram\'{\i}rez Alfons\'{\i}n and Ska{\l}ba which states that #\left\{p\le g_{c,d}:p\in \mathcal{P}, ~p=cx+dy,~x,y\in \mathbb{Z}_{\geqslant0}\right\}\sim \frac{1}{2}\pi\left(g_{c,d}\right) \quad (\text{as}~c\rightarrow\infty), where P\mathcal{P} is the set of primes, Zβ©Ύ0\mathbb{Z}_{\geqslant0} is the set of nonnegative integers and Ο€(t)\pi(t) denotes the number of primes not exceeding tt

    Similar works

    Full text

    thumbnail-image

    Available Versions