Real-Variable Theory for New Herz-Type Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

Abstract

Let XX be a ball quasi-Banach function space, α∈R\alpha\in \mathbb{R} and q∈(0,∞)q\in(0,\infty). In this paper, the authors first introduce the new Herz-type Hardy spaces HKΛ™XΞ±, q(Rn)\mathcal{H\dot{K}}_{X}^{\alpha,\,q}({\mathbb {R}}^n) and HKXΞ±, q(Rn)\mathcal{HK}_{X}^{\alpha,\,q}({\mathbb {R}}^n) associated with ball quasi-Banach function space XX, via the non-tangential grand maximal function. Then, under some mild assumptions on XX, the authors establish the real-variable theory for HKΛ™XΞ±, q(Rn)\mathcal{H\dot{K}}_{X}^{\alpha,\,q}({\mathbb {R}}^n) and HKXΞ±, q(Rn)\mathcal{HK}_{X}^{\alpha,\,q}({\mathbb {R}}^n), in terms of maximal function characterizations, atomic and molecular decompositions, and obtain the boundedness of some sublinear operators from HKΛ™XΞ±, q(Rn)\mathcal{H\dot{K}}_{X}^{\alpha,\,q}({\mathbb {R}}^n) to KΛ™XΞ±, q(Rn)\mathcal{\dot{K}}_{X}^{\alpha,\,q}({\mathbb {R}}^n) and from HKXΞ±, q(Rn)\mathcal{HK}_{X}^{\alpha,\,q}({\mathbb {R}}^n) to KXΞ±, q(Rn)\mathcal{K}_{X}^{\alpha,\,q}({\mathbb {R}}^n). As appliccations, we give two concrete function spaces which are members of Herz-type Hardy spaces associated with ball quasi-Banach function spaces.Comment: 37 pages, submitte

    Similar works

    Full text

    thumbnail-image

    Available Versions