Locally Resonant Metagrating by Elastic Impedance Modulation

Abstract

The optical and acoustic metagratings have addressed the limitations of low-efficiency wave manipulation and high-complexity fabrication of metamaterials and metasurfaces. In this research, we introduce the concept of elastic metagrating and present the theoretical and experimental demonstration of locally resonant elastic metagrating (LREM). Remarkably, the LREM, with dimensions two orders of magnitude smaller than the relevant wavelength, overcomes the size limitations of conventional metagratings and offers a unique design paradigm for highly efficient wave manipulation with an extremely compact structure in elastic wave systems. Based on a distinctive elastic impedance engineering with hybridization of intrinsic evanescent waves, the proposed LREM achieves wide-angle perfect absorption. This tackles a fundamental challenge faced by all elastic metastructures designed for wave manipulation, which consists in the unavoidable vibration modes in finite structures hindering their implementations in real-world applications

    Similar works

    Full text

    thumbnail-image

    Available Versions