We present an overview of and preliminary results from an ongoing
comprehensive program that has a goal of determining the Hubble constant to a
systematic accuracy of 2%. As part of this program, we are currently obtaining
3.6 micron data using the Infrared Array Camera (IRAC) on Spitzer, and the
program is designed to include JWST in the future. We demonstrate that the
mid-infrared period-luminosity relation for Cepheids at 3.6 microns is the most
accurate means of measuring Cepheid distances to date. At 3.6 microns, it is
possible to minimize the known remaining systematic uncertainties in the
Cepheid extragalactic distance scale. We discuss the advantages of 3.6 micron
observations in minimizing systematic effects in the Cepheid calibration of the
Hubble constant including the absolute zero point, extinction corrections, and
the effects of metallicity on the colors and magnitudes of Cepheids. We are
undertaking three independent tests of the sensitivity of the mid-IR Cepheid
Leavitt Law to metallicity, which when combined will allow a robust constraint
on the effect. Finally, we are providing a new mid-IR Tully-Fisher relation for
spiral galaxies