research

Large, global solutions to the Navier-Stokes equations, slowly varying in one direction

Abstract

In to previous papers by the authors, classes of initial data to the three dimensional, incompressible Navier-Stokes equations were presented, generating a global smooth solution although the norm of the initial data may be chosen arbitrarily large. The aim of this article is to provide new examples of arbitrarily large initial data giving rise to global solutions, in the whole space. Contrary to the previous examples, the initial data has no particular oscillatory properties, but varies slowly in one direction. The proof uses the special structure of the nonlinear term of the equation.Comment: References adde

    Similar works