Molecular Packing-Dependent Exciton and Polari on Dynamics in Anthradithiophene Organic Crystals

Abstract

Polarization-dependent absorption spectra of two functionalized derivatives of fluorinated anthradithiophene, diF TES-ADT and diF TDMS-ADT, were studied in the crystal phase using a Holstein-like Hamiltonian. For both molecules, the primary contribution to the lowest energy absorption was found to be the S-0-S-1 excitonic transition perturbed by an intermolecular coupling of 15 meV for both TES and TDMS. A secondary contribution, consistent with that from charge-transfer states, was also found. Additionally, absorption spectra were analysed when crystals were placed inside of optical microcavities formed by two metal mirrors. Cavities exhibited a primary absorption peak determined to be an enhanced absorption from the lowest-energy S-0-S-1 transition

    Similar works