H-InDex: Visual Reinforcement Learning with Hand-Informed Representations for Dexterous Manipulation

Abstract

Human hands possess remarkable dexterity and have long served as a source of inspiration for robotic manipulation. In this work, we propose a human H\textbf{H}and-In\textbf{-In}formed visual representation learning framework to solve difficult Dex\textbf{Dex}terous manipulation tasks (H-InDex\textbf{H-InDex}) with reinforcement learning. Our framework consists of three stages: (i) pre-training representations with 3D human hand pose estimation, (ii) offline adapting representations with self-supervised keypoint detection, and (iii) reinforcement learning with exponential moving average BatchNorm. The last two stages only modify 0.36%0.36\% parameters of the pre-trained representation in total, ensuring the knowledge from pre-training is maintained to the full extent. We empirically study 12 challenging dexterous manipulation tasks and find that H-InDex largely surpasses strong baseline methods and the recent visual foundation models for motor control. Code is available at https://yanjieze.com/H-InDex .Comment: NeurIPS 2023. Code and videos: https://yanjieze.com/H-InDe

    Similar works

    Full text

    thumbnail-image

    Available Versions