Deepfakes are synthetic media generated using deep generative algorithms and
have posed a severe societal and political threat. Apart from facial
manipulation and synthetic voice, recently, a novel kind of deepfakes has
emerged with either audio or visual modalities manipulated. In this regard, a
new generation of multimodal audio-visual deepfake detectors is being
investigated to collectively focus on audio and visual data for multimodal
manipulation detection. Existing multimodal (audio-visual) deepfake detectors
are often based on the fusion of the audio and visual streams from the video.
Existing studies suggest that these multimodal detectors often obtain
equivalent performances with unimodal audio and visual deepfake detectors. We
conjecture that the heterogeneous nature of the audio and visual signals
creates distributional modality gaps and poses a significant challenge to
effective fusion and efficient performance. In this paper, we tackle the
problem at the representation level to aid the fusion of audio and visual
streams for multimodal deepfake detection. Specifically, we propose the joint
use of modality (audio and visual) invariant and specific representations. This
ensures that the common patterns and patterns specific to each modality
representing pristine or fake content are preserved and fused for multimodal
deepfake manipulation detection. Our experimental results on FakeAVCeleb and
KoDF audio-visual deepfake datasets suggest the enhanced accuracy of our
proposed method over SOTA unimodal and multimodal audio-visual deepfake
detectors by 17.8% and 18.4%, respectively. Thus, obtaining
state-of-the-art performance.Comment: 8 pages, 3 figure