An Efficient Resilient MPC Scheme via Constraint Tightening against Cyberattacks: Application to Vehicle Cruise Control

Abstract

We propose a novel framework for designing a resilient Model Predictive Control (MPC) targeting uncertain linear systems under cyber attack. Assuming a periodic attack scenario, we model the system under Denial of Service (DoS) attack, also with measurement noise, as an uncertain linear system with parametric and additive uncertainty. To detect anomalies, we employ a Kalman filter-based approach. Then, through our observations of the intensity of the launched attack, we determine a range of possible values for the system matrices, as well as establish bounds of the additive uncertainty for the equivalent uncertain system. Leveraging a recent constraint tightening robust MPC method, we present an optimization-based resilient algorithm. Accordingly, we compute the uncertainty bounds and corresponding constraints offline for various attack magnitudes. Then, this data can be used efficiently in the MPC computations online. We demonstrate the effectiveness of the developed framework on the Adaptive Cruise Control (ACC) problem.Comment: To Appear in ICINCO 202

    Similar works

    Full text

    thumbnail-image

    Available Versions