Nested Sampling for Uncertainty Quantification and Rare Event Estimation

Abstract

Nested Sampling is a method for computing the Bayesian evidence, also called the marginal likelihood, which is the integral of the likelihood with respect to the prior. More generally, it is a numerical probabilistic quadrature rule. The main idea of Nested Sampling is to replace a high-dimensional likelihood integral over parameter space with an integral over the unit line by employing a push-forward with respect to a suitable transformation. Practically, a set of active samples ascends the level sets of the integrand function, with the measure contraction of the super-level sets being statistically estimated. We justify the validity of this approach for integrands with non-negligible plateaus, and demonstrate Nested Sampling's practical effectiveness in estimating the (log-)probability of rare events.Comment: 24 page

    Similar works

    Full text

    thumbnail-image

    Available Versions