Emerging Spin-Orbit Torques in Low Dimensional Dirac Materials

Abstract

We report a theoretical description of novel spin-orbit torque components emerging in two-dimensional Dirac materials with broken inversion symmetry. In contrast to usual metallic interfaces where field-like and damping-like torque components are competing, we find that an intrinsic damping-like torque which derives from all Fermi-sea electrons can be simultaneously enhanced along with the field-like component. Additionally, hitherto overlooked torque components unique to Dirac materials, emerge from the coupling between spin and pseudospin degrees of freedom. These torques are found to be resilient to disorder and could enhance the magnetic switching performance of nearby magnets

    Similar works

    Full text

    thumbnail-image

    Available Versions