Abstract

We report on precision mass measurements of 113,115,117^{113,115,117}Ru performed with the JYFLTRAP double Penning trap mass spectrometer at the Accelerator Laboratory of University of Jyv\"askyl\"a. The phase-imaging ion-cyclotron-resonance technique was used to resolve the ground and isomeric states in 113,115^{113,115}Ru and enabled for the first time a measurement of the isomer excitation energies, Ex(113E_x(^{113}Rum)=100.5(8)^{m})=100.5(8) keV and Ex(115E_x(^{115}Rum)=129(5)^{m})=129(5) keV. The ground state of 117^{117}Ru was measured using the time-of-flight ion-cyclotron-resonance technique. The new mass-excess value for 117^{117}Ru is around 36 keV lower and 7 times more precise than the previous literature value. With the more precise ground-state mass values, the evolution of the two-neutron separation energies is further constrained and a similar trend as predicted by the BSkG1 model is obtained up to the neutron number N=71N=71.Comment: 12 pages, 9 figures, submitted to Physical Review

    Similar works

    Full text

    thumbnail-image

    Available Versions