Growing attention has been paid to Reinforcement Learning (RL) algorithms
when optimizing long-term user engagement in sequential recommendation tasks.
One challenge in large-scale online recommendation systems is the constant and
complicated changes in users' behavior patterns, such as interaction rates and
retention tendencies. When formulated as a Markov Decision Process (MDP), the
dynamics and reward functions of the recommendation system are continuously
affected by these changes. Existing RL algorithms for recommendation systems
will suffer from distribution shift and struggle to adapt in such an MDP. In
this paper, we introduce a novel paradigm called Adaptive Sequential
Recommendation (AdaRec) to address this issue. AdaRec proposes a new
distance-based representation loss to extract latent information from users'
interaction trajectories. Such information reflects how RL policy fits to
current user behavior patterns, and helps the policy to identify subtle changes
in the recommendation system. To make rapid adaptation to these changes, AdaRec
encourages exploration with the idea of optimism under uncertainty. The
exploration is further guarded by zero-order action optimization to ensure
stable recommendation quality in complicated environments. We conduct extensive
empirical analyses in both simulator-based and live sequential recommendation
tasks, where AdaRec exhibits superior long-term performance compared to all
baseline algorithms.Comment: Preprint. Under Revie