The path towards resource elasticity for 5G network architecture

Abstract

Proceeding of: IEEE Wireless Communications and Networking Conference Workshops (WCNCW 2018)Vertical markets and industries are addressing a large diversity of heterogeneous services, use cases, and applications in 5G. It is currently common understanding that for networks to be able to satisfy those needs, a flexible, adaptable, and programmable architecture based on network slicing is required. Moreover, a softwarization and cloudification of the communications networks is already happening, where network functions (NFs) are transformed from monolithic pieces of equipment to programs running over a shared pool of computational and communication resources. However, this novel architecture paradigm requires new solutions to exploit its inherent flexibility. In this paper, we introduce the concept of resource elasticity as a key means to make an efficient use of the computational resources in 5G systems. Besides establishing a definition as well as a set of requirements and key performance indicators (KPIs), we propose mechanisms for the exploitation of elasticity in three different dimensions, namely computational elasticity in the design and scaling of NFs, orchestration-driven elasticity by flexible placement of NFs, and slice-aware elasticity via cross-slice resource provisioning mechanisms. Finally, we provide a succinct analysis of the architectural components that need to be enhanced to incorporate elasticity principles.Part of this work has been performed within the 5GMoNArch project, part of the Phase II of the 5th Generation Public Private Partnership (5G-PPP) program partially funded by the European Commission within the Horizon 2020 Framework Program

    Similar works