Software-defined wireless transport networks for flexible mobile backhaul in 5G systems

Abstract

Traditionally microwave backhaul has been configured and operated in a static manner by means of vendor specific management systems. This mode of operation will be difficult to adapt to the new challenges originated by 5G networks. New mechanisms for adaptation and flexibility are required also in this network segment. The usage of a signaled control plane solution (based on OpenFlow) will facilitate the operation and will provide means for automation of actions on the wireless transport network segment. In addition to that, a standard control plane helps to reach the multi-vendor approach reducing complexity and variety of current per-vendor operation. This paper presents the motivation for the introduction of programmability concepts in wireless transport networks and illustrate the applicability of such control plane with two relevant use cases for dynamically controlling wireless transport nodes in 5G networks. Extensions to OpenFlow protocol are also introduced for building Software Defined Wireless Transport Networks (SDWTNs).This research was (partially) funded by the Office of the Chief Scientist of the Israel Ministry of Economy under the Neptune generic research project (the Israeli consortium for network programming). This work has been also (partially) funded by the EU H2020 Xhaul Project (grant no. 671598)

    Similar works