Abstract

Herein are reported the first p complexes of compounds with boron-boron triple bonds to transition metals, in this case CuI. Three different compounds were isolated that differ in the number of copper atoms bound to the BB unit. Metallation of the B-B triple bonds causes significant lengthening of the B-B and B-CNHC bonds, as well as large upfield shifts of the 11B NMR signals, suggesting greater orbital interactions between the boron and transition metal atoms than those observed with recently published diboryne / alkali metal cation complexes. In contrast to previously-reported fluorescent copper(I) p complexes of boron-boron double bonds, the Cun-p-diboryne compounds (n = 2, 3) show intense phosphorescence in the red to near-IR region from their triplet excited states, according to their microsecond lifetimes, with quantum yields of up to 58%. The bonding situation, as well as the unusual photophysical properties, has been further corroborated by DFT studies

    Similar works

    Full text

    thumbnail-image