Null mutation in shaking-B eliminates electrical but not chemical synapses in the Drosophila giant fibre system: a structural study.

Abstract

Mutations in the Drosophila shaking-B gene perturb synaptic transmission and dye coupling in the giant fiber escape system. The GAL4 upstream activation sequence system was used to express a neuronal-synaptobrevin-green fluorescent protein (nsyb-GFP) construct in the giant fibers (GFs); nsyb-GFP was localized where the GFs contact the peripherally synapsing interneurons (PSIs) and the tergotrochanteral motorneurons (TTMns). Antibody to Shaking-B protein stained plaquelike structures in the same regions of the GFs, although not all plaques colocalized with nsyb-GFP. Electron microscopy showed that the GF-TTMn and GF-PSI contacts contained many chemical synaptic release sites. These sites were interposed with extensive regions of close membrane apposition (3.25 nm ± 0.12 separation), with faint cross striations and a single-layered array of 41-nm vesicles on the GF side of the apposition. These contacts appeared similar to rectifying electrical synapses in the crayfish and were eliminated in shaking-B2 mutants. At mutant GF-TTMn and GF-PSI contacts, chemical synapses and small regions of close membrane apposition, more similar to vertebrate gap junctions, were not affected. Gap junctions with more vertebratelike separation of membranes (1.41 nm ± 0.08) were abundant between peripheral perineurial glial processes; these were unaffected in the mutants. J. Comp. Neurol. 404:449¿458, 1999. © 1999 Wiley-Liss, Inc

    Similar works

    Full text

    thumbnail-image