Processi attivati dalla luce per la separazione e la degradazione delle microplastiche comunemente presenti nei sistemi acquatici.

Abstract

Lo scopo di questo progetto è stato quello di sviluppare e valutare strategie guidate dalla luce per la separazione e la degradazione delle microplastiche comunemente presenti nei sistemi acquatici. Nella prima parte di questo progetto è stato studiato un processo di degradazione fotocatalitica per la degradazione delle microplastiche di polietilene sotto luce visibile a diverse temperature e pH 3. Un fotocatalizzatore di C,N-TiO2 attivo nel spettro visibile è stato sintetizzato attraverso una procedura di sintesi idrotermale utilizzando il liquido extrapalliale delle cozze Mytilus Edulis come fonte di drogaggio di C e N. Gli esperimenti sono stati condotti in una camera di reazione in cui una lampada LED Visibile da 500 W/m2 irradiava il campione dall'alto. Il ruolo delle specie reattive nella degradazione delle microplastiche in polietilene ad alta densità (HDPE) è stato studiato utilizzando scavengers per OH●, h+, O2●− ed e−. I risultati hanno rivelato che la formazione di OH● libero attraverso i percorsi che coinvolgono il e− fotogenerato gioca un ruolo essenziale nel degrado delle microplastiche. Ulteriori studi sono stati condotti per la degradazione fotocatalitica delle microplastiche di polietilene tereftalato (PET) a temperatura ambiente e pH diversi. In questo caso, un fotocatalizzatore di C,N-TiO2/SiO2 è stato sintetizzato utilizzando il liquido extrapalliale delle cozze Mytilus Edulis e Mytilus Galloprovincialis come fonte di drogaggio di C e N. Entrambi i fotocatalizzatori sono stati completamente caratterizzati e sono state confrontate le loro proprietà e attività fotocatalitica. Gli esperimenti fotocatalitici sono stati condotti in una camera di reazione con irraggiamento di luce visibile, a temperatura ambiente, valutando l'influenza del pH 6 e 8 per 120 ore. I risultati suggeriscono che il processo fotocatalitico ha avviato la degradazione delle microplastiche PET, come è stato confermato da una perdita di massa del 9-16%, dalla diminuzione dell'indice di carbonile estratto dagli spettri FT-IR e dai cambiamenti di cristallinità dei campioni di PET. Il foto-fenton è stato anche valutato per la degradazione delle microplastiche in PE sotto la luce solare. Gli esperimenti sono stati eseguiti in un simulatore solare per 9 ore in 1 L di soluzione a pH 2,8 e 100 mg di microplastiche PE. La degradazione è stata seguita da TOC, SEM e FTIR. Un marcato aumento del TOC è stato ottenuto durante gli esperimenti, suggerendo che i composti del carbonio venivano prodotti come risultato della degradazione. Tuttavia, ciò non può essere dimostrato al SEM poiché la rugosità delle microplastiche PE iniziali limitava l'analisi della morfologia superficiale e, sebbene vi fosse una riduzione di alcune bande caratteristiche del PE negli spettri FT-IR, non vi fu alcun nuovo sviluppo di bande carboniliche, che sono un indicatore di degradazione. L'ultima parte del progetto consisteva nello sviluppo di micromotori fotocatalitici a base di TiO2, che sono in grado di separare e degradare le microplastiche quando irradiate da luce visibile e UV. I micromotori sferici a base di TiO2 sono stati drogati utilizzando il fluido extrapalliale delle cozze Mytilus Galloprovincialis, che erano i campioni caratterizzati e confrontati con i campioni non drogati e il fotocatalizzatore C,N-TiO2 ottenuto attraverso la sintesi idrotermale. L'attività fotocatalitica dei semiconduttori è stata testata per la degradazione delle microplastiche di polistirene sotto la luce UV e visibile. I test sono stati eseguiti con i fotocatalizzatori e le microplastiche in film e in dispersione. I risultati del SEM indicano che il micromotore TiO2 drogato ha un'attività fotocatalitica migliorata rispetto al campione non drogato e al fotocatalizzatore C,N-TiO2.The purpose of this project was to develop and evaluate light-driven strategies for the separation and degradation of microplastics commonly present in aquatic systems. In the first part of this project, a photocatalytic degradation process was studied for the degradation of polyethylene microplastics under visible light at different temperatures and pH. A visible active C,N-TiO2 was synthesized through a hydrothermal synthesis procedure using the extrapallial fluid of Mytilus Edulis mussels as the C and N doping source. The experiments were carried out in a reaction chamber in which a 500 W/m2 Visible LED lamp was irradiating the sample from the top. The reactive species’ role in the degradation of high-density polyethylene (HDPE) microplastics was studied using OH●, h+, O2●− and e− scavengers. The results revealed that the formation of free OH● through the pathways involving the photogenerated e− plays an essential role in the MPs’ degradation. Further studies were carried out for the photocatalytic degradation of polyethylene terephthalate (PET) microplastics at ambient temperature and different pH. In this case, a C,N-TiO2/SiO2 was synthesized using the extrapallial fluid of Mytilus Edulis and Mytilus Galloprovincialis mussels as the C and N doping source. Both photocatalysts were completely characterized and their properties and photocatalytic activity were compared. The photocatalytic experiments were also carried out in a reaction chamber with Visible light irradiation, at room temperature, evaluating the influence of pH 6 and 8 for 120 hours. Results suggest that the photocatalytic process initiated the degradation of PET microplastics, as was confirmed by a 9-16% mass loss, the decreasing of carbonyl index extracted from FT-IR spectra, and the changes of crystallinity of PET samples. Photo-fenton was also evaluated for the degradation of PE microplastics under solar light. The experiments were performed in a solar simulator for 9 h in 1 L of pH 2.8 solution and 100 mg of PE microplastics. The degradation was followed by TOC, SEM and FTIR. A marked increase in TOC was obtained throughout the experiments, suggesting that carbon compounds were being produced as a result of degradation. However, this could not be proved by SEM as the rugosity of initial PE microplastics limited the analysis of the surface morphology, and even though there was a reduction of some characteristic bands of PE in the FT-IR spectra, there was no new development of carbonyl bands, which are an indicator of degradation. The last part of the project was developing TiO2-based photocatalytic micromotors, that can separate and degrade microplastics when irradiated by visible and UV light. Spherical TiO2-based micromotors were doped using the extrapallial fluid of Mytilus Galloprovincialis mussels, which were the characterized and compared to the undoped samples and the C,N-TiO2 photocatalyst obtained through the hydrothermal synthesis. The photocatalytic activity of the semiconductors was tested for the degradation of polystyrene microplastics under UV and visible light. The tests were performed with the photocatalysts and microplastics in a film and in dispersion. SEM results indicate that the doped TiO2 micromotor has an improved photocatalytic activity compared to the undoped sample and the C,N-TiO2 photocatalyst

    Similar works